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3DHEAT

Project overview/goals:

Targeting explosive condition inside an unknown item.

* Both thermal and mechanical conditions are of interest, especially if the explosive is
damaged.

* Qutcomes:
- Thermal: assess the time that remains before thermal damage ignites the explosive,
- Mechanical: damage to the explosive may affect its performance
How the explosive responds to various emergency response actions.

e Assessing the explosives condition from outside the casing in any phase remains challenging.
- Low energy radiography does not provide sufficient penetration nor density contrast to assess mechanical
damage, or thermal damage such as a melt-zone.
- High energy radiography provides high penetration, but also tends to wash out finer contrasting features such as
fractures and small density differences between solid and molten explosives.
- Radiographic techniques in general do not provide sufficient quantitative information related to temperature.
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3DHEAT

Technical approach:

* In order to assess thermal (e.g. temperature or phase) and mechanical damage (e.g. fractures
or rubbleization), a combination of linear and nonlinear acoustics techniques will be used.

* A unique collimated low-frequency sound beam and beam scanning (linear acoustics),
developed recently in our Acoustic Team, will be investigated for thermal damage, which can
lead to spatially resolved 3D temperature field inside the sample.

* Nonlinear acoustics approaches are more suitable for cracks and voids detection. Either
higher harmonics, or difference frequency will be monitored for mechanical damage

mapping.



3DHEAT
Technical approach; Linear Acoustics ~ Temperature

Knowledge of the explosive temperature field inside an unknown item can help to inform an assessment of the
time that remains before thermal damage ignites the explosive, or how the explosive responds to various
emergency response actions.
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3DHEAT

Technical approach: Nonlinear Acoustics ~ Mechanical Damage
Contact acoustic nonlinearity: Cracks open/close resulting in nonlinearities
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3DHEAT

Deliverables:

Title (as will be entered in webPMIS) | Description (as will be entered in
webPMIS Task(s

WebPMIS Budget Update At a minimum, WebPMIS should be All NLT the 10t for the
updated monthly to accurately reflect previous month
costing against the project

Acoustics diagnosis of thermal Technical report on acoustics F End of Y3/Q4

damage in Pentolite capabilities for thermal
damage detection in Pentolite

Acoustics diagnosis of mechanical Technical report on acoustics J End of Y3/Q4

damage in Pentolite capabilities for mechanical

damage detection in Pentolite

Per HQ format (uploaded and approved All w/in 10 days EOQ
Administrative Update in WebPMIS)

Per HQ format All w/in 30 days EQY
Per HQ format All w/in 30 days EOP




3DHEAT

Description of capability improvement to be addressed by
project success (relevant to the non-proliferation mission):

If successful, this deployed technology will greatly enhance the
emergency response community’s ability to move left.
Moving left means decisions to mitigate risk can be made at earlier
times during the response operation, and with reduced uncertainty.



3DHEAT

Progress to date:
Instrumentation development
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3DHEAT

Travel Time [s]

Progress to date:
Theoreticalldata processing development
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Progress to date:

3DHEAT

Acoustics diagnosis of thermal damage in Pentolite

Experimental waveforms and
temperatures
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» Spurious points due to data dropout: Verification experiment needed
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Acoustics diagnosis of thermal damage in Pentolite

Center temp. [°C]

Progress to date:
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3DHEAT

Machine learning, CNN (convolutional neural network)

Training: 10 Nov 20 (~3750 samples)
Testing: 10 Nov 20
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Shunt diodes added for 10 Nov 20

Additional training samples required to
account for full range of experimental

conditions
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3DHEAT

Progress to date:
Acoustics diagnosis of thermal damage in Pentolite

Least-squares reverse-time migration/full-waveform inversion

Initial Velocity Models
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3DHEAT
Technical challenges:

e Acoustic signal can get trapped in
the casing/enclosure.

e HE is known to have significant
sound attenuation, which leads to - - .
small reflections.

Broadband
3 CollinearSource
& Receiver Combo

e These are mitigated by the unique
properties of the acoustic source: Sound beam

) ) ) X-¥ scanned
collimation to avoid mode

trapping, and low frequency

to overcome attenuation.

Cement block in water tank



3DHEAT
Future work:

Task Year 1 Year 2 Year 3
Q1 | Q2| Q3 /04| Q1| Q2| Q3| Q4| Q1| Q2

Task A — Instrumentation development X

Task B — Theoretical/data processing development X

Project Baseline Review

Task C — Build mock explosive with thermal damage

Task D — Acoustics diagnosis of thermal damage in wax X

Task E — Build Pentolite cylinder block with thermal damage

Task F — Acoustics diagnosis of thermal damage in Pentolite

Task G — Build mock explosive with mechanical damage

Task H — Acoustics diagnosis of mechanical damage in wax X

Independent Assessment X

Task | — Build Pentolite cylinder block with mechanical damage

Task J — Acoustics diagnosis of mechanical damage in Pentolite

Write Final Report and other Deliverables

Final Out Brief

Table of Milestones
Description | Tasks | DueDate |

Initial instrumentation and theoretical/data processing approaches developed for Y1/Q2

HE condition determination

Y2/Q4
Y2/Q4
Y3/Q4
Y3/Q4




